深度强化学习(DRL 4) - DQN的实战(DQN, Double DQN, Dueling DQN)
发布于 2022-05-01    1,479 次阅读
目录 一、环境 二、DQN 三、Double DQN 四、Dueling DQN(D3QN) 五、小结 全部代码: https://github.com/ColinFred/Reinforce_Learning_Pytorch/tree/main/RL/DQN 一、环境 查看可用的环境 from gym import envs print(envs.registry.all()) ValuesV...

全部代码:

https://github.com/ColinFred/Reinforce_Learning_Pytorch/tree/main/RL/DQN

一、环境

查看可用的环境

from gym import envs
print(envs.registry.all())
ValuesView(├──CartPole: [ v0, v1 ]
├──MountainCar: [ v0 ]
├──MountainCarContinuous: [ v0 ]
├──Pendulum: [ v1 ]
├──Acrobot: [ v1 ]
├──LunarLander: [ v2 ]
├──LunarLanderContinuous: [ v2 ]
├──BipedalWalker: [ v3 ]
├──BipedalWalkerHardcore: [ v3 ]
├──CarRacing: [ v1 ]
├──Blackjack: [ v1 ]
├──FrozenLake: [ v1 ]
├──FrozenLake8x8: [ v1 ]
├──CliffWalking: [ v0 ]
├──Taxi: [ v3 ]
├──Reacher: [ v2 ]
├──Pusher: [ v2 ]
├──Thrower: [ v2 ]
├──Striker: [ v2 ]
├──InvertedPendulum: [ v2 ]

依旧使用CartPole-v1的环境,改写reward的值


# print(env.action_space) # number of action
# print(env.observation_space) # number of state
# print(env.observation_space.high)
# print(env.observation_space.low)

NUM_ACTIONS = env.action_space.n
NUM_STATES = env.observation_space.shape[0]
ENV_A_SHAPE = 0 if isinstance(env.action_space.sample(), int) else env.action_space.sample.shape

RL = DQN(n_action=NUM_ACTIONS, n_state=NUM_STATES, learning_rate=0.01)  # choose algorithm
total_steps = 0
for episode in range(1000):
    state, info = env.reset(return_info=True)
    ep_r = 0
    while True:
        env.render()  # update env
        action = RL.choose_action(state)  # choose action
        state_, reward, done, info = env.step(action)  # take action and get next state and reward
        x, x_dot, theta, theta_dot = state_  # change given reward
        r1 = (env.x_threshold - abs(x)) / env.x_threshold - 0.8
        r2 = (env.theta_threshold_radians - abs(theta)) / env.theta_threshold_radians - 0.5
        reward = r1 + r2  # consider both locations and radians

        RL.store_transition(state, action, reward, state_)  # store transition
        RL.learn()  # learn

        ep_r += reward
        if total_steps % C == 0:  # every C steps update target_network
            RL.update_target_network()

        if done:
            print('episode: ', episode,
                  'ep_r: ', round(ep_r, 2))
            break

        state = state_
        total_steps += 1
        time.sleep(0.05)

二、DQN

代码:

1,经验回放

先进行若干次游戏,将游戏数据存储到memory中。从memory中随机选取训练数据batch_memory用于批量训练。

Transition = namedtuple('Transition',
                        ('state', 'action', 'next_state', 'reward'))  # Define a transition tuple


class ReplayMemory(object):  # Define a replay memory

    def __init__(self, capacity):
        self.capacity = capacity
        self.memory = []
        self.position = 0

    def Push(self, *args):
        if len(self.memory) < self.capacity:
            self.memory.append(None)
        self.memory[self.position] = Transition(*args)
        self.position = (self.position + 1) % self.capacity

    def Sample(self, batch_size):
        return sample(self.memory, batch_size)

    def __len__(self):
        return len(self.memory)

2,DNN网络

输入的维度是状态的树木,输出的是Q(s,a)的在状态s的各个Q值。对初始权重进行处理,使其服从均值0,方差0.1的正态分布。

class DNN(nn.Module):  # Double DQN
    def __init__(self, n_state, n_action):  # Define the layers of the fully-connected hidden network
        super(DNN, self).__init__()
        self.input_layer = nn.Linear(n_state, 64)
        self.input_layer.weight.data.normal_(0, 0.1)
        self.middle_layer = nn.Linear(64, 32)
        self.middle_layer.weight.data.normal_(0, 0.1)
        self.middle_layer_2 = nn.Linear(32, 32)
        self.middle_layer_2.weight.data.normal_(0, 0.1)

        self.adv_layer = nn.Linear(32, n_action)
        self.adv_layer.weight.data.normal_(0, 0.1)

    def forward(self, state):
        x = F.relu(self.input_layer(state))
        x = F.relu(self.middle_layer(x))
        x = F.relu(self.middle_layer_2(x))

        out = self.adv_layer(x)
        return out


DQN,难点在于理解 learn()函数,要求对pytorch的各个函数较熟悉。

class DQN:
    def __init__(self, n_action, n_state, learning_rate):

        self.n_action = n_action
        self.n_state = n_state

        self.memory = ReplayMemory(capacity=100)
        self.memory_counter = 0

        self.model_policy = DNN(self.n_state, self.n_action)
        self.model_target = DNN(self.n_state, self.n_action)
        self.model_target.load_state_dict(self.model_policy.state_dict())
        self.model_target.eval()

        self.optimizer = optim.Adam(self.model_policy.parameters(), lr=learning_rate)

    def store_transition(self, s, a, r, s_):
        state = torch.FloatTensor([s])
        action = torch.LongTensor([a])
        reward = torch.FloatTensor([r])
        next_state = torch.FloatTensor([s_])
        self.memory.Push(state, action, next_state, reward)

    def choose_action(self, state):
        state = torch.FloatTensor(state)
        if np.random.randn() <= EPISILO:  # greedy policy
            with torch.no_grad():
                q_value = self.model_policy(state)
                action = q_value.max(0)[1].view(1, 1).item()
        else:  # random policy
            action = torch.tensor([randrange(self.n_action)], dtype=torch.long).item()

        return action

    def learn(self):
        if len(self.memory) < BATCH_SIZE:
            return
        transitions = self.memory.Sample(BATCH_SIZE)
        batch = Transition(*zip(*transitions))

        state_batch = torch.cat(batch.state)
        action_batch = torch.cat(batch.action).unsqueeze(1)
        reward_batch = torch.cat(batch.reward)
        next_state_batch = torch.cat(batch.next_state)

        state_action_values = self.model_policy(state_batch).gather(1, action_batch)

        next_action_batch = torch.unsqueeze(self.model_target(next_state_batch).max(1)[1], 1)
        next_state_values = self.model_target(next_state_batch).gather(1, next_action_batch)
        expected_state_action_values = (next_state_values * GAMMA) + reward_batch.unsqueeze(1)

        loss = F.smooth_l1_loss(state_action_values, expected_state_action_values)

        self.optimizer.zero_grad()
        loss.backward()
        for param in self.model_policy.parameters():
            param.grad.data.clamp_(-1, 1)
        self.optimizer.step()

    def update_target_network(self):
        self.model_target.load_state_dict(self.model_policy.state_dict())

三、Double DQN

DDQN通过解耦目标Q值动作的选择和目标Q值的计算这两步,来达到消除过度估计的问题。在DDQN这里,不再是直接在目标Q网络里面找各个动作中最大Q值,而是先在当前Q网络中先找出最大Q值对应的动作。然后利用这个选择出来的动作在目标Q网络里面去计算目标Q值。在代码的体现上就是将104行的

next_action_batch = torch.unsqueeze(self.model_target(next_state_batch).max(1)[1], 1)

改为

next_action_batch = torch.unsqueeze(self.model_policy(next_state_batch).max(1)[1], 1)

非常简单的改动

四、Dueling DQN(D3QN)

基本思路就是Q(s,a)的值既和state有关,又和action有关。但是两种"有关"的程度不一样,或者说影响力不一样。对于Q(s,a) 我们希望它能反应出两个方面的差异。

1,对于当前状态s,能够很好的区分不同action的影响
2,对于不同状态s,能够很好的区分不同state的影响

将Q值分成V和A,关系为:Q = V + A

V评价当前状态,是一个值。A评价动作,与Q同维度。

也就是将DNN网络改为

class DNN(nn.Module):  # D3QN
    def __init__(self, n_state, n_action):  # Define the layers of the fully-connected hidden network
        super(DNN, self).__init__()
        self.input_layer = nn.Linear(n_state, 64)
        self.input_layer.weight.data.normal_(0, 0.1)
        self.middle_layer = nn.Linear(64, 32)
        self.middle_layer.weight.data.normal_(0, 0.1)
        self.middle_layer_2 = nn.Linear(32, 32)
        self.middle_layer_2.weight.data.normal_(0, 0.1)

        self.adv_layer = nn.Linear(32, n_action)
        self.adv_layer.weight.data.normal_(0, 0.1)

        self.value_layer = nn.Linear(32, 1)
        self.value_layer.weight.data.normal_(0, 0.1)

    def forward(self, state):  # Define the neural network forward function
        x = F.relu(self.input_layer(state))
        x = F.relu(self.middle_layer(x))
        x = F.relu(self.middle_layer_2(x))

        value = self.value_layer(x)
        adv = self.adv_layer(x)

        out = value + adv - adv.mean()
        return out

Q = V + A

一般算法中都要减去一个A的均值,是为了对A做去中心化处理。

Q = V + A - A.mean()

如果不这样做,假设Q值为[11,12,13,14,15],那么V和A会有无数种结果,比如V=10,A=[1,2,3,4,5],或者V=9,A=[2,3,4,5,6]等等。

减去均值后,就有了唯一的V和A:V=13, A=[-2,-1,0,1,2]

五、小结

调节超参数

MEMORY_CAPACITY = 1000
C = 50
BATCH_SIZE = 32
LR = 0.01
GAMMA = 0.90
EPISILO = 0.9
TEST_EPISODE = 30

分别运行使用DQN、Double DQN、Dueling DQN ,可以直观的显示它们的性能。

版权说明 : 本文为转载文章, 版权为原作者所有

原文标题 : 深度强化学习(DRL)四:DQN的实战(DQN, Double DQN, Dueling DQN)

原文连接 : https://blog.csdn.net/windowsyun/article/details/123344175